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Microbes are ubiquitous but our knowledge of their effects on consumers is limited
in benthic marine systems. Shorelines often form hotspots of microbial and detritivore
activity due to the large amounts of detrital macrophytes that are exported from other
coastal ecosystems, such as kelp forests, and accumulate in these systems. Shoreline
ecosystems therefore provide a useful model system to examine microbial-detritivore
interactions. We experimentally test whether bacteria in the biofilm of kelp provide a
bottom-up influence on growth and reproductive output of detritivores in shorelines
where detrital kelp accumulates, by manipulating the bacterial abundances on kelp
(Ecklonia radiata). The growth rates for both male and female amphipods (Allorchestes
compressa) were greater in treatments containing bacteria than those in which bacteria
were reduced through antibiotic treatment, and this effect was greater for males offered
aged kelp. The proportions of ovigerous females were greater when reared on kelp
with intact bacteria, indicating a more rapid reproductive development in the presence
of more bacteria. Bacterial abundance had little to no influence on nutrient content
and palatability of kelp, based on tissue toughness, nitrogen and carbon content
and C:N ratio. Thus, the most likely pathway for a microbial effect on detritivores
was through feeding on kelp-associated bacteria. Regardless of the pathway, kelp-
associated microbes have a strong influence on the fitness of a highly abundant
detritivore that feeds preferentially on E. radiata in shoreline systems, and therefore form
a hidden trophic step in this “brown” food web and a hotspot of secondary production.

Keywords: epibiont bacteria, beach, growth, reproduction, amphipod, detritus, surf zone, grazer

INTRODUCTION

Microbes are ubiquitous and can produce strong bottom-up and top-down controls on ecosystem
functions (Crowther and Grossart, 2015). Much of our understanding of how microbes provide
a bottom-up influence on secondary production is limited to detrital-based (“brown”) food webs
in terrestrial systems, where microbes can improve nutritional quality of detritus (Zimmer and
Topp, 1997; Filipiak and Weiner, 2014), provide a direct nutrient-rich food source (Thompson
et al., 1999), and ultimately improve fitness of consumers through increased reproductive success
and growth (Zimmer and Topp, 1997; Horváthová et al., 2016). In marine ecosystems, our
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understanding of the bottom-up controls of microbes on
consumers is limited (except pelagic systems, see Pomeroy
et al., 2007), although they are known to form highly abundant
and diverse communities on the surfaces of benthic marine
macrophytes (Egan et al., 2013; Weigel and Pfister, 2019).
Bacteria form the main component of microbial communities
in benthic systems (Wahl et al., 2012), providing a range of
functions that can have both positive (e.g., provision of nutrients)
and negative (e.g., disease) effects on their host (Egan et al., 2013).
However, two decades of microbe-host research has invariably
focused on the interactions between microbial communities
and their hosts (Douglas, 2018). Surprisingly, there has been
very limited research on the influence of macrophyte-associated
microbes on consumers, despite the importance of grazing and
detritivory in coastal marine systems (Poore et al., 2012).

Shorelines often form hotspots of decomposition via microbes
and detritivores due to the large amounts of detrital macrophyte
material (known as wrack) that accumulates in these systems
(Rodil et al., 2019; van Erk et al., 2020). Detrital material exported
from highly productive kelp forests and seagrass meadows (Heck
et al., 2008; Krumhansl and Scheibling, 2012) form the bulk
of wrack in shoreline ecosystems (Hyndes et al., 2014). Such
material that fluxes across ecosystem boundaries are termed
“spatial subsidies” when they flow from a donor ecosystem (more
productive) to a recipient ecosystem (less productive) where it
enhances production and biodiversity (Polis et al., 1997), and
microbes have been proposed to play an important role in this
process (Säwström et al., 2016). In shoreline ecosystems, kelp
appears to play a disproportionately important role in their food
webs compared with other forms of detrital inputs (Lastra et al.,
2008; Crawley et al., 2009; Suárez-Jiménez et al., 2017). Thus, kelp
detritus in sandy shoreline ecosystems provides a suitable model
system to examine the bottom-up influence of microbes on the
detrital-based coastal food webs.

Here, we examine the role of microbes in enhancing secondary
production in the detrital-based food web of sandy shorelines,
using the kelp Ecklonia radiata as a model of a highly productive
autotrophic system that exports material into sandy-beach
ecosystems. We experimentally tested whether kelp-associated
microbes enhanced growth and reproduction of detritivores by
manipulating bacterial abundances in kelp biofilm. To establish
whether food palatability and nutritional quality explain any
effect of microbes on detritivores, we also examined traits of kelp
with intact and reduced microbial biofilms during the course
of the experiment. Finally, we determined kelp biomass and
bacterial abundances in the study region to place the laboratory
experiment in the context of the natural system.

MATERIALS AND METHODS

Study Design and Rationale
The amphipod Allorchestes compressa is abundant in moist wrack
in the lower zone of the sandy beach and the nearshore waters
adjacent to the beach in south-western Australia (Crawley and
Hyndes, 2007; Ince et al., 2007). Aquaria-reared amphipods were
fed different treatments of the kelp E. radiata to determine

whether growth rate and reproduction were influenced by
bacteria. This kelp is a highly productive and abundant canopy-
forming kelp on reefs in the temperate regions of Australasia
(Kirkman and Kendrick, 1997), which exports large biomass
of kelp (de Bettignies et al., 2013) to other coastal ecosystems,
particularly along shorelines (Figure 1A, Kirkman and Kendrick,
1997). A. compressa (Figure 1B inset) is an ideal model species
to examine the effect of microbes on detritivores as it: (1)
has successfully been used in aquaria experiments in the past
(Robertson and Lucas, 1983; Crawley and Hyndes, 2007); (2) is
a highly abundant detritivore in wrack accumulations along the
shoreline of south-western Australia, where it grazes on fresh and
aged E. radiata (Robertson and Lucas, 1983; Crawley and Hyndes,
2007); (3) has been shown to have higher growth, survival and
reproductive rates on aged vs fresh kelp (Robertson and Lucas,
1983); and (4) is a major food source to higher order consumers
(Crawley et al., 2009).

Juvenile amphipods were experimentally raised on fresh and
aged E. radiata (“Type”), either treated with antibiotics to
reduce bacterial abundances or left untreated to represent kelp
with natural abundances of bacteria (“Treatment”: control and
antibiotic treated). Because bacterial abundances on kelp increase
with decomposition (Koop and Griffiths, 1982), fresh vs aged
kelp represented a range of decomposition levels of kelp in
shoreline wrack. We confirmed that the use of aged and fresh
kelp mimicked bacterial abundances found on shoreline wrack
by comparing bacterial abundances on kelp in the experiments
and in the field (see section “Results”). The antibiotic treatment
procedure used here (see below) has been shown to have no
effect on the chemistry of macroalgae but affects the diversity and
abundances of bacteria (Huggett et al., 2006). Assessment of the
broad chemical and physical properties of treated and control
kelp in the current study indicated no effect on the chemical
properties or tissue toughness of kelp (see section “Results”).
The aquarium experiment comprised five replicates for each
treatment/type combination, with the experiment run over
6 weeks to examine growth and 8 weeks to examine reproduction
of A. compressa. Bacterial abundances, along with variables
representing food palatability and quality, were measured at
intervals throughout the experiment.

Collection and Maintenance of Kelp and
Amphipods
Kelp with the holdfast was harvested from reefs near Perth
(−31◦49′13.60′′S, 115◦44′13.46′′E) during September-December
2014, and transported to aquaria facilities, where they were rinsed
with fresh seawater to remove any adhering fauna and sand.
The kelp (one whole sporophyte per tank) was then placed in
10 L aquaria containing 8 L of fresh seawater. The water was
kept aerated and maintained at 22◦C with a 12/12 h light/dark
cycle for 2 weeks, to represent “aged” kelp with higher bacterial
loads present in the surf zone. Fresh kelp was collected from the
same location just prior to the initiation of the experiment, to
represent “fresh” kelp. This procedure was repeated two times
each week over 10 weeks, allowing fresh and aged kelp pieces
to be replaced in the experiment frequently and accounting for
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FIGURE 1 | (A) Wrack in the surf zone and on the beach in south-western Australia; (B) the amphipod Allorchestes compressa (inset) feeding on the kelp Ecklonia
radiata and its biofilm; and examples of the levels of biofilm on experimental pieces of kelp which (C) had not been subjected antiobiotic treatment and (D) had been
treated with antibiotics.

temporal variability in microbial composition and abundances in
the biofilm of kelp in the experiment.

The amphipod A. compressa was harvested in October 2014
from the surf zone near the location for kelp collection. Fresh
seawater was filtered through a 4 mm and then a 125 µm mesh
and the retained amphipods were placed in a 20 L container with
fresh seawater, then transported and transferred to 30 L aquaria
containing aerated fresh seawater, and maintained in similar
conditions as the kelp. They were fed on a mixture of brown algae
at various levels of decomposition and allowed to acclimatize
to the new environment. Juveniles resulting from mating of the
captured amphipods were separated from the parent population a
day prior to the experiment and housed in separate aquaria under
the same conditions as the parents.

Treatment of Kelp
Freshly harvested and aged kelp were cut into pieces of 150–
200 g wet weight (n = 5) using a sterile blade and placed
immediately into sterile bottles containing sterile, 0.22 µm-
filtered seawater. Capped bottles were shaken vigorously for a few
seconds to remove loosely attached macrobionts (Kientz et al.,
2011), repeating the procedure twice. For antibiotic treatment,
both sides of the kelp piece were wiped on a sterile agar plate

to facilitate the physical removal of the biofilm from the surface
of the macroalga (Huggett et al., 2006), and then immersed for
10 min in 10% BetadineTM (povidone-iodine) solution, prepared
using sterile 0.22 µm-filtered seawater. Pieces were again wiped
on sterile agar plates and then immersed in a sterile 0.22 µm-
filtered antibiotic solution containing 20 mg/l Streptomycin
sulfate, 10 mg/l Kanamycin sulfate and 10 mg/l Penicillin-G
(sodium salt) for 24 h (Huggett et al., 2006). Kelp pieces were then
wiped on sterile agar plates again and rinsed in sterile 0.22 µm-
filtered seawater, followed by two 1-min immersions in 10%
BetadineTM solution and two rinses in 0.22 µm sterile filtered
seawater before deploying in the experiment. This procedure
was adopted to remove any residual antibiotic and BetadineTM

and minimize their potential influence on grazers. Evidence from
control experiments in Huggett et al. (2006) indicated that, while
this procedure involves handling of algae across a number of days,
the main effect is from the antibiotic treatment, rather than any
impacts of handling.

Experimental Procedures
The experimental aquaria consisted of 0.75 L containers under
the same conditions as the breeding aquarium, but using
0.22 µm-filtered, autoclaved seawater. Treated and untreated
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fresh and aged kelp were randomly allocated to containers
housing amphipods and replaced every 24 h to maintain
consistent bacterial and kelp condition across the experiment.
Just prior to the start of the experiment, the lengths of five of
the 105 randomly-selected juvenile amphipods for each replicate
were measured to the nearest 0.001 mm along the curved
dorsal surface from the anterior of the head to the tip of
the telson (Poore et al., 2013) using images captured by a
NIKON D5000 camera mounted on a dissecting microscope at
40X magnification and Image J software (version 1.46r). The
remaining 100 amphipods were added to each replicate container
and maintained for a 6-week period to determine growth, and
a further 2 weeks to determine the reproductive output. For
growth, the termination point was based on the time at which
amphipods showed the first signs of pairing, which represented
a sign of maturity and maximum length. For reproduction,
the termination point was based on time when eggs or broods
were first visible in the most mature amphipods. Continuous
monitoring prior to this termination point confirmed that the
pairings and associated broods represented the first generation
of broods.

At the termination of the growth component of the
experiment, 5 male and 5 female amphipods were randomly
selected from each replicate container and measured for
their final lengths using the above procedure. The remaining
amphipods continued to be raised for a further 2 weeks,
after which the number of females with eggs or broods and
the remaining female and male amphipods were counted. For
females with eggs or broods, the eggs and juveniles were dissected

from the brood pouch under a dissecting microscope using fine
needle and forceps. Images of dissected female amphipods and
eggs were captured using a NIKON D5000 camera mounted on
a dissecting microscope and used to determine the number of
eggs per female.

Bacterial Abundance on Kelp
To enumerate bacteria that were present on kelp tissue from
each of the four treatment/type combinations, a sub-sample of
the kelp tissue designated to each replicate aquarium at the start
(Week 1), middle (Week 4), and end of the experiment (Week
8) was retained. Bacteria were detached from the kelp substrate
by weighing 1 g (wet weight) of kelp from each replicate piece
separately and immediately placing the material in 9 ml 0.22 µm
sterile filtered seawater and shaken vigorously by hand. The
samples were then sonicated in an ultrasonic bath for 3 min
and then shaken for 10 min on an orbital shaker at highest
speed (Buesing and Gessner, 2002). An aliquot of the supernatant
was fixed in glutaraldehyde (final concentration 2%) and stored
in −20◦C. Later, the samples were thawed in the dark and
bacterial abundances were enumerated using a Beckman Coulter
GalliosTM flow cytometer (FC), equipped with an air-cooled laser
providing 22 mW at 488 nm band-pass filter. 20 µl of each
sample was added to 380 µl of 0.22 µm filtered TE (Tris–EDTA,
pH = 8.0) buffer + 10 µl of SYBR Gold (nucleic acid DNA
stain, at a 1/20,000 final dilution of the stock solution supplied
by the manufacturer) and incubated in the dark for 15 min
in an 80◦C water bath (Marie et al., 1999). After incubation,

TABLE 1 | Results of two-way ANOVA examining the effects of wrack type (Fresh kelp and 2 weeks Aged kelp) and treatment (Control and Antibiotic treatment) on
heterotrophic bacterial abundances, and tissue toughness, nitrogen content (%N), carbon content (%C), and C/N ratio of kelp tissue.

Variable Source of variation df MS F P

Bacteria abundance∧+ Age (A) 1 22.71 184.39 0.000

Treatment (Tr) 1 6.93 56.27 0.000

A x Tr 1 0.30 2.47 0.122

Residual 48 0.12

Tissue toughness Age (A) 1 247.3 1.93 0.171

Treatment (Tr) 1 314.83 2.45 0.123

A x Tr 1 2.08 0.02 0.899

Residual 48 128.38

Nitrogen content* Age (A) 1 0.03 1.95 0.175

Treatment (Tr) 1 0.00 0.00 0.963

A x Tr 1 0.01 0.53 0.473

Residual 24 0.11

Carbon content* Age (A) 1 45.32 0.29 0.040

Treatment (Tr) 1 1.53 0.01 0.744

A x Tr 1 0.01 0.06 0.943

Residual 24 9.74

C/N ratio* Age (A) 1 1.11 0.05 0.618

Treatment (Tr) 1 0.60 0.01 0.842

A x Tr 1 13.20 0.19 0.398

Residual 24 17.56

∧Data are log10 transformed.
*Data are square-root transformed.
+Accepted at p < 0.01 due to assumptions of ANOVA not being met.
Bold p-values indicates significant effects.
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5 µl of vortexed 0.95 µm beads (Polysciences Inc.), with final
concentration of 105 beads ml−1, was added. This mixture was
then transferred to U-bottom polypropylene tubes and read
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FIGURE 2 | Mean (±SE) bacterial abundance (×106 cells gFW−1) on kelp,
kelp tissue toughness (g, n = 15), nitrogen content, carbon content, and C:N
ratio (n = 9) of kelp tissue in different kelp type (Fresh and 2 weeks Aged kelp)
and treatment [Control (C) and Antibiotic treatment (T)]. Data for different times
(Weeks 1, 4, and 8) were pooled since ANOVA showed no time effects.

on the flow cytometer, which was calibrated before and after
each sample series. The cytograms were analyzed using Kaluza
Analysis version 2.1 software.

Food Quality and Palatability
Characteristics of Kelp
Toughness and nutrient content of kelp were determined for
a subsample of kelp material placed in each replicate in each
treatment/type at the start (Week 1), middle (Week 4), and end
of the experiment (Week 8). The toughness of kelp tissue was
measured immediately using a penetrometer (Duffy and Hay,
1991), consisting of a pointed needle (1 mm diameter) vertically
glued to a cup, pointing down and mounted over the piece of
kelp tissue placed on the bottom panel. Dried sand was added
to the cup until the needle pierced the kelp tissue. The weight
of cup + needle + sand was recorded as the weight required to
penetrate the kelp tissue, expressed in grams (g). For total carbon
(TC) and nitrogen (TN) content of kelp, samples were defrosted
after being frozen at−20◦C, oven dried at 70◦C for 48 h, and then
ground to a fine powder using a ball mill grinder. Samples were
analyzed for N and C content (% by weight) using an Automated
Nitrogen Carbon Analyzer system consisting of a Sercon 20-22
mass spectrometer and an EA (SERCON, United Kingdom).

In situ Kelp and Bacterial Abundances
Wrack was collected in July, August and September/October 2013
from the same locations described above in the surf zone and
on the beach (−31◦49′13.60′′S, 115◦44′13.46′′E), which regularly
receive large inputs of wrack during the late autumn-early spring.
On the beach in each month, five replicate wrack samples were
collected from a 0.25 m2 quadrat, while five replicate samples
from the surf zone were collected using a hand-held scoop net
with a 23 × 20 cm opening and 1 mm mesh pulled through the
water column from bottom to top. Wrack samples from both
zones were rinsed with seawater to remove sand, other debris and
associated fauna, and then spun in a salad spinner for 3–4 cycles
to remove excess water and loose epibionts. Kelp (E. radiata)
was removed and weighed to provide fresh weight (g) per m2.
Additional kelp (n = 5) was collected randomly along the two
zones, and 1.0 g (wet weight) of kelp from each sample was placed
in a sterile 15 ml centrifuge tube containing 9 ml of 0.22 µm
filtered seawater. Bacterial abundance was then determined using
the same procedures described for the experiment (see above).

Data Analysis
Since amphipods within each replicate container were not
independent, data were pooled for each replicate for each
type/treatment combination. Amphipod growth rate was
calculated as the difference in length over the time period of the
experiment (average final length minus the average length of the
sub-sample of amphipods at the beginning of the experiment).
Since two-way Analysis of Variance (ANOVA) showed no
difference between the initial lengths in the different wrack
“type” and “treatment” combinations, an average across all
replicates for all wrack age and treatments was used to determine
the initial lengths of amphipods for growth data at the end of
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the experiment. Due to the high degree of variability in the
survival of amphipods among aquaria across treatments and
kelp age, the percentage of ovigerous females to total females
was calculated. The number of eggs per female was based on the
ovigerous females that were present at the end of the experiment.
A two-way ANOVA was conducted to test for effects of Type
(fresh vs aged) and Treatment (antibiotic treated vs untreated)
on the growth rate of male and female amphipods, the number
of eggs per female, and the proportion of brooding females
to all females. Since an initial three-way ANOVA on bacterial
abundance, kelp tissue toughness, and kelp tissue C and N
content and C:N ratios showed no time effect, a series of two-way
ANOVAs was conducted to determine the effects of Type (fixed;
fresh vs aged) and Treatment (fixed; antibiotic treated vs control)
on these variables. While not presented in the results, a two-way
ANOVA on survival of amphipods indicated no treatment
(p = 0.96), type (p = 0.12), or interactive effect between these
factors (p = 0.30), indicating that survival does not affect the
results of the experiment. Data were tested using Shapiro–Wilk’s
test (p > 0.05) and a visual inspection of the normal Q-Q plots
for normality, and Levene’s test for homogeneity of variance.
Data not meeting the assumptions were log10 or square-root
transformed, and if they were still not met, alpha was set at 0.01
(Underwood, 1997). All analyses were carried out using SPSS
version 22 software (SPSS Inc., Chicago, IL, United States).

RESULTS

Experimental Bacterial Abundances and
Kelp Characteristics
Bacterial abundances were higher on control vs treated kelp,
regardless of age of kelp, but the abundances in both treatments
were far higher on aged than on fresh kelp (Table 1 and Figure 2).

For aged kelp, the average bacterial abundance was 5.4 × 106

on treated kelp compared to 39 × 106 cells g FW kelp−1 on
untreated (control) kelp. For fresh kelp, bacterial abundance
was 0.4 × 106 cells g FW kelp−1 on treated kelp compared to
13 × 106 cells g FW kelp−1 on untreated kelp (Figure 2). There
was visibly more biofilm on control vs treated kelp for both fresh
and aged kelp in the experiment (see Figures 1C,D for examples
of control aged and treated kelp, respectively).

Tissue toughness did not differ between treatments (control
vs antibiotic) or age (fresh vs aged kelp (Table 1 and Figure 2).
Similarly, there was no significant effect of kelp age or treatment
on nitrogen (N) and carbon (C) content or C:N ratio of kelp
tissue, and these kelp characteristics did not change over the
course of the experiment (Table 1 and Figure 2).

Growth Rates and Reproduction of
Amphipods
For female amphipods, growth rates were greater in treatments
containing bacteria than those where bacteria had been reduced,
regardless of kelp age (Table 2 and Figure 3). For males,
there was a significant interactive effect of age x treatment on
growth rate. While growth rates were higher in the control
than in the treatment, the effect was greater in aged than fresh
kelp. Growth rates for females were ∼0.08 mm·d−1 to ∼0.05–
0.06 mm·d−1 in control and treatments, respectively, while
those for males were 0.11–0.13 mm·d−1 in kelp with bacteria
compared to ∼0.08 mm·d−1 in kelp with reduced bacteria
(Figure 3).

The percentage of ovigerous females was about twice as high
for treatments containing kelp with bacteria (31 and 41% in fresh
and aged kelp, respectively) compared with antibiotic treated
kelp where the bacterial abundance had been reduced (18 and
21%, respectively; Table 1 and Figure 3), indicating that females
became ovigerous more rapidly on control kelp that contained

TABLE 2 | Result of two-way ANOVA testing the effect of Treatment (Control and Antibiotic treatment) and Age of kelp (Fresh and Aged kelp) on growth rate of male and
female amphipods, percentage of ovigerous female amphipods, and number of eggs per total female amphipods.

Variable Source of variation df MS F P

Male growth rates Kelp age (A) 1 0.002 9.76 0.002

Kelp treatment (Tr) 1 0.052 256.73 0.000

A x Tr 1 0.003 15.79 0.000

Residual 16 0

Female growth rates Kelp age (A) 1 0.001 3.84 0.053

Kelp treatment (Tr) 1 0.015 102.67 0.000

A x Tr 1 0.000 0.33 0.566

Residual 16 0

Percentage of ovigerous females* Kelp age (A) 1 1.811 0.30 0.591

Kelp treatment (Tr) 1 37.557 6.22 0.024

A x Tr 1 0.166 0.03 0.87

Residual 16 6.034

Number of eggs per female* Kelp age (A) 1 6.15 1.59 0.211

Kelp treatment (Tr) 1 6.45 1.67 0.200

A x Tr 1 0.06 0.14 0.906

Residual 16 3.86

*Data are SQRT transformed.
Bold p-values indicates significant effects.
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more bacteria. Indeed, females in two of the five replicate aquaria
for both fresh and aged kelp that had been treated with antibiotics
did not become ovigerous. For those females that had become
ovigerous, the number of eggs per female did not differ between
control and treatment and age of kelp (Table 1), with mean values
ranging from 4.5 to 6.1 eggs per female (Figure 3).

Kelp Biomass and Bacterial Abundance
in Shoreline Wrack
The biomass of kelp in the wrack on beaches and in the surf
zone ranged between 111 and 978 g FW kelp m−2 and 52 and
393 g FW kelp m−2, respectively (Table 3). The abundances
of heterotrophic bacteria on kelp ranged from 0.7 × 106

to 16.0 × 106 cells·g FW kelp−1 and from 0.9 × 106 to
39.1× 106 cells·g FW kelp−1 in the respective habitats (Table 3).

DISCUSSION

We show that bacteria in the biofilm of the kelp E. radiata
enhance both the growth rate and the reproductive output of
the amphipod A. compressa fed on fresh and aged kelp in
a lab experiment mimicking a detrital-based, shoreline food
web. Shoreline ecosystems containing wrack are recognized as
hotspots for decomposition, which is clearly linked to wrack-
associated bacteria (Koop et al., 1982; Inglis, 1989). However,
with the exception of the likely reliance of the seaweed flies
(Coelopa spp.) on wrack-associated microbes (e.g., Cullen et al.,
1987), we know surprisingly little about the role of these microbes
in enhancing secondary production in shoreline systems, and
marine systems as a whole. Indeed, while microbes have been
proposed as the “hidden” trophic step in detrital food webs in
terrestrial and freshwater ecosystems, their bottom-up effects
on consumers are poorly understood even in those ecosystems
(Mancinelli and Mulder, 2015). Here, we argue that bacteria
also form a “hidden” trophic step in wrack along the shoreline
in coastal, marine environments, and such a role could also be
important in other coastal, marine ecosystems.

Our results clearly show that bacteria are abundant on kelp
(39× 106 cells g FW kelp−1 on untreated kelp) and these bacteria
appear to enhance the fitness of amphipods in this detrital
pathway, as evidenced by increasing their growth rates by ∼33%
for females and 50% for males and doubling the proportion of
ovigorous females over the course of the experiment. Amphipods
are typically the dominant detritivore that consume wrack along
sandy beaches and surf zones around the world (Colombini and
Chelazzi, 2003). In our study region, the amphipod A. compressa
is highly abundant and its strong preference for kelp, particularly
aged kelp, over other macrophytes leads to high feeding rates
on this detrital material (Figure 1B, Robertson and Lucas,
1983; Crawley and Hyndes, 2007). While Robertson and Lucas
(1983) showed that A. compressa had higher grazing rates and
higher numbers of ovigerous females when fed on decomposed
kelp, they suggested that bacterial abundances on the kelp were
relatively low. In contrast, we show that bacteria are likely to
play an important role in enhancing the fitness of this amphipod.
Our results are unlikely to be influenced by an indirect effect

FIGURE 3 | Mean (±SE, n = 5) growth rates of male and female amphipods
(mm/day), and percentage of ovigerous female and number of eggs per
female amphipods in different wrack types (Fresh and 2 weeks Aged kelp) and
treatment [Control (C) and Antibiotic treatment (T)].

of the antibiotic treatment since factors that affect grazing
such as carbon and nitrogen content and ratios as well as
tissue toughness (Duffy and Hay, 1991; Pennings et al., 2000;
Taylor and Steinberg, 2005) did not differ between treatments.
Similarly, the antibiotic treatment procedure we used here was
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TABLE 3 | Average (±SE) bacterial abundance on kelp (Ecklonia radiata) and kelp biomass on the beach and in the surf zone over three times when wrack is abundant
in sandy beach ecosystems in south-western Australia.

Beach Surf zone

Bacterial abundance
(×106 cells g FW kelp−1)

Wrack biomass
(g FW m−2)

Bacterial abundance
(×106 cells g FW kelp−1)

Wrack biomass
(g FW m−2)

July 5.1 (±3.3) 978 (±300) 16.3 (±6.5) 393 (±83)

August 16.0 (±9.2) 224 (±39) 39.1 (±23.1) 288 (±48)

September 0.7 (±0.2) 111 (±43) 0.9 (±0.2) 52 (±15)

previously shown to have no influence on a key chemically-
mediated interaction (larval settlement) on macroalga (Huggett
et al., 2006). Kelp treated with antibiotics had less than one-
third the abundance of bacteria than untreated kelp. We therefore
argue that the increased growth rates of both male and female
amphipods, and the more rapid development of ovigerous
females, in controls reflect the higher abundances of bacteria.
This is further supported by a ∼20% and ∼10% increase
in growth rates of male and female amphipods, respectively,
when fed on aged kelp characterized by high abundances of
bacteria vs fresh kelp with lower abundances of bacteria. The
more rapid reproductive activity of females, as shown through
the percentage of ovigerous females in the presence of higher
bacterial abundances, almost certainly related to the increased
growth rates of amphipods on kelp with increased bacteria load,
since the timing of sexual maturity is influenced by size (Longo
and Mancinelli, 2014). While the fecundity of amphipods did
not differ between treatments, the more rapid development of
reproductively active (ovigerous) females would lead to increased
reproductive output of A. compressa. The increased growth rates
and fecundity of amphipods would result in a faster population
growth rate that could rapidly take advantage of the large inputs
of detrital kelp into the shoreline ecosystem. Furthermore, since
A. compressa forms the major food source for juvenile fish that
use shoreline wrack as a nursery habitat (Crawley et al., 2006),
the kelp-associated bacteria would facilitate the transfer of kelp-
derived nutrients through the food web (Crawley et al., 2009). In
addition, the enhanced population growth of amphipods would
increase food availability for those juvenile fish, allowing more
fish to occupy the wrack and/or enhance their growth rates,
and ultimately lead to an increase in biomass of fish migrating
into their sub-adult and spawning habitats in more offshore,
coastal ecosystems.

The ability of amphipods to process macrophytes is influenced
by food quality (see Duffy and Hay, 1991; Taylor and Steinberg,
2005). In both subtidal and shoreline systems, these mesograzers
often prefer brown algae over other macrophytes and prefer
some species of brown algae over others (Pennings et al., 2000;
Taylor and Steinberg, 2005; Crawley and Hyndes, 2007; Lastra
et al., 2008; Duarte et al., 2010), although those preferences
may not relate to food quality (Pennings et al., 2000; Taylor
and Steinberg, 2005). For example, Pennings et al. (2000)
demonstrated that feeding patterns of mesograzers were not
related to palatability and quality of algal species, but mesograzers
displayed preferences for those same algal species when cast

on the beach, despite tissue toughness being higher and
nitrogen content being lower in beach-cast material. In terms of
living macrophytes, palatability and food quality can influence
mesograzer fitness (Duffy and Hay, 1991), and higher nitrogen
and protein content has been shown to support faster growth
rates in grazers (Barile et al., 2004). However, palatability and
food quality did not appear to account for the differences in
growth and reproductive output of A. compressa fed on kelp with
natural or reduced bacterial abundances since tissue toughness
and nutrient content did not differ across these treatments.
Compensatory feeding may overcome the consequences of poor
food quality on fitness traits such as survival, reproductive output
and growth (Cruz-Rivera and Hay, 2001). While we observed
grazed areas of kelp in our experiments (Figure 1) that supports
direct grazing on kelp and possible compensatory feeding by
amphipods, as also shown in previous feeding experiments for
this food source and grazer (Crawley and Hyndes, 2007), we
argue that A. compressa also feeds directly on kelp-associated
bacteria based on the observed grazing marks in the biofilm of
kelp (Figure 1).

In terrestrial and freshwater ecosystems, microbes can play
a dual role in detrital food webs by enhancing the quality
and palatability of detritus for consumers, or competing with
consumers for nutrients (Mancinelli and Mulder, 2015). In
saltmarsh systems, grazers preferentially feed on areas of leaves
with high microbial densities or areas that have been conditioned
by microbes (Zimmer et al., 2002; Silliman and Newell, 2003).
Microbial activity can improve the food attractiveness and
quality of detritus (Zimmer and Topp, 1997; Ihnen and Zimmer,
2008; Filipiak and Weiner, 2014), or supply nutrients through
direct consumption by foragers (Thompson et al., 1999). Indeed,
microbial activity beyond the 2-week “aging” period for kelp
in our experiment would likely alter the integrity of the kelp
and increase its direct consumption by amphipods as the kelp
decomposes. Sosik and Simenstad (2013) hypothesized that
biofilm absorbs organic compounds from the decomposing host
that would otherwise be lost to the external environment, which
could explain the lack of, or limited shift, in C:N ratios and C
and N content in aged vs fresh kelp seen in our study. The low
C:N ratios of 6:1 for bacteria (Fukuda et al., 1998), compared
to approximately 22:1 for fresh and aged kelp in this study,
would provide a more nitrogen rich source than the alga itself.
Similarly, the high levels of lipids and poly-unsaturated fatty
acids in bacteria (De Carvalho and Caramujo, 2012) would
enhance nutrient supply to those grazers. Biofilm has high levels
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of proteins and lipids (Fernandes Da Silva et al., 2008), and
increased biofilm load on leaves increases reproductive success
and growth of isopods in forest systems (Zimmer and Topp, 1997;
Horváthová et al., 2016). Thus, kelp-associated bacteria are likely
to provide a more nutrient rich food source for A. compressa in
the shoreline system that would enhance this amphipod’s fitness.

In our study region, kelp is released from the canopy at
6.6 kg·m−2

·year−1 (de Bettignies et al., 2013), compared to the
global average 1.16 kg m−1

·year−1 (Krumhansl and Scheibling,
2012), with large quantities transported to the shore in our region
and across the globe (Kirkman and Kendrick, 1997; Hyndes
et al., 2014). Here, we show that bacteria in the biofilm of
E. radiata tripled to 39 × 106 cells·g FW kelp−1 within 2 weeks
of harvesting, which represents the detachment of thalli from
the reef and movement to the shoreline, and reflected the upper
range of bacterial abundances we recorded in the surf zone
(0.9 × 106 to 39.1 × 106 cells·g FW kelp−1). Similarly, Koop
and Griffiths (1982) showed that bacterial abundances on freshly
collected Ecklonia maxima in South Africa increased rapidly
over 8 days. Given that we placed kelp sections in filtered and
sterilized seawater, the increase in bacterial abundance likely
reflects the growth of existing colonies. The decomposition of
kelp occurs through the concomitant lysis of epidermal cells and
bacterial colonization, with an estimated 90% of the leachates
being utilized by bacteria and 23–27% of the carbon being
converted to bacterial biomass from E. maxima on South African
shores (Koop et al., 1982). Bacteria are key decomposers of
macrophytes in sandy beach ecosystems, where they are strongly
linked to the high production of nutrients and metabolism (Rodil
et al., 2019; van Erk et al., 2020). This activity forms biochemical
hotspots (Coupland et al., 2007; Dugan et al., 2011; Rodil et al.,
2019) that provide an important coastal example of biochemical
hotspots at the interface between aquatic and terrestrial systems
(McClain et al., 2003). But our study suggests that bacteria
in these hotspots also directly influence the food web via the
consumption of bacteria by amphipods, forming hotspots of
secondary production.

Similar to shoreline systems, detrital kelp has been shown
to accumulate and contribute to secondary production in other
coastal systems, such as the kelp forests themselves (Vanderklift
and Kendrick, 2005), adjacent seagrass meadows (Hyndes et al.,
2012; Cartraud et al., 2021), and deep habitats (Dethier et al.,
2014). Thus, kelp-associated bacteria could play a similar role
in facilitating the transfer of nutrients into other coastal food
webs. Indeed, Tarquinio et al. (2018) showed that heterotrophic
microbes facilitate the uptake of kelp-derived nitrogen into

seagrass ecosystems, supporting the mechanistic role that
microbes play in trophic subsidies that enhance biodiversity and
productivity in ecosystems (Säwström et al., 2016). However,
this role is likely to vary across kelp species due to variability
in microbial abundances and decomposition across kelp species
(Sosik and Simenstad, 2013; Dethier et al., 2014). The need
for further research on microbe-detritivore/grazer interactions is
highlighted by the link between disease on marine macrophytes
and ocean warming (e.g., Campbell et al., 2011), and disease-
mediated grazing on macroalgae (Campbell et al., 2014). This is
particularly pertinent for the major habitat-forming kelp, which
is being lost at an alarming rate (Krumhansl et al., 2016), and
whose epibiont communities and condition are affected by ocean
warming and acidification (Qiu et al., 2019).
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